
Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

 UNIT-1 AWD

Concepts of NoSQL

What is a NoSQL database?

When people use the term “NoSQL database,” they typically use it to refer to any non-

relational database. Some say the term “NoSQL” stands for “non SQL” while others say

it stands for “not only SQL.” Either way, most agree that NoSQL databases are

databases that store data in a format other than relational tables.

Brief history of NoSQL databasesNoSQL databases emerged in the late 2000s as the

cost of storage dramatically decreased. Gone were the days of needing to create a

complex, difficult-to-manage data model in order to avoid data duplication. Developers

(rather than storage) were becoming the primary cost of software development, so

NoSQL databases optimized for developer productivity.

Advantages and Disadvantages of NoSQL

Major advantages of NoSQL databases include:

(i) Flexible Data Model:

NoSQL databases are highly flexible as they can store and combine any type of data,
both structured and unstructured, unlike relational databases that can store data in a
structured way only.

(ii) Evolving Data Model :

NoSQL databases allow you to dynamically update the schema to evolve with changing
requirements while ensuring that it would cause no interruption or downtime to your
application.

(iii) Elastic Scalability:

NoSQL databases can scale to accommodate any type of data growth while
maintaining low cost.

(iv) High Performance:

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

NoSQL databases are built for great performance, measured in terms of both
throughput (it is a measure of overall performance) and latency (it is the delay
between request and actual response).

(v) Open-source:

NoSQL databases don’t require expensive licensing fees and can run on inexpensive
hardware, rendering their deployment cost-effective.

Major disadvantages of NoSQL databases are:

(i) Lack of Standardization:

There is no standard that defines rules and roles of NoSQL databases. The design and
query languages of NoSQL databases vary widely between different NoSQL products –
much more widely than they do among traditional SQL databases.

(ii) Backup of Database:

Backups are a drawback in NoSQL databases. Though some NoSQL databases like
MongoDB provide some tools for backup, these tools are not mature enough to ensure
proper complete data backup solution.

(iii) Consistency:

NoSQL puts a scalability and performance first but when it comes to a consistency of
the data NoSQL doesn’t take much consideration so it makes it little insecure as
compared to the relational database e.g., in NoSQL databases if you enter same set of
data again, it will take it without issuing any error whereas relational databases
ensure that no duplicate rows get entry in databases.

What is MongoDB?

MongoDB is a cross-platform, document oriented database that provides, high
performance, high availability, and easy scalability. MongoDB works on concept of
collection and document.

Database

Database is a physical container for collections. Each database gets its own set of files
on the file system. A single MongoDB server typically has multiple databases.

Collection

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A
collection exists within a single database. Collections do not enforce a schema.
Documents within a collection can have different fields. Typically, all documents in a
collection are of similar or related purpose.

Document

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic
schema means that documents in the same collection do not need to have the same set
of fields or structure, and common fields in a collection's documents may hold different
types of data.

The following table shows the relationship of RDBMS terminology with MongoDB.

RDBMS MongoDB

Database Database

Table Collection

Tuple/Row Document

column Field

Table Join Embedded Documents

Primary Key Primary Key (Default key _id provided by MongoDB itself)

Sample Document

Following example shows the document structure of a blog site, which is simply a
comma separated key value pair.

{
 _id: ObjectId(7df78ad8902c)
 title: 'MongoDB in AWD',
 description: 'MongoDB is no sql database',
 by: 'Ritu Bhatiya',
 url: 'http://www.samplewebsitename.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 100,
 comments: [
 {
 user:'user1',
 message: 'My first comment',
 dateCreated: new Date(2022,1,20,2,15),

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

 like: 0
 },
 {
 user:'user2',
 message: 'My second comments',
 dateCreated: new Date(2022,1,25,7,45),
 like: 5
 }
]
}

_id is a 12 bytes hexadecimal number which assures the uniqueness of every document.
You can provide _id while inserting the document. If you don’t provide then MongoDB
provides a unique id for every document. These 12 bytes first 4 bytes for the current
timestamp, next 3 bytes for machine id, next 2 bytes for process id of MongoDB server
and remaining 3 bytes are simple incremental VALUE.

MongoDB supports many datatypes. Some of them are −

● String − This is the most commonly used datatype to store the data. String in
MongoDB must be UTF-8 (Unicode Transformation Format) valid.

● Integer − This type is used to store a numerical value. Integer can be 32 bit or 64
bit depending upon your server.

● Boolean − This type is used to store a boolean (true/ false) value.

● Double − This type is used to store floating point values.

● Min/ Max keys − This type is used to compare a value against the lowest and
highest BSON elements.

● Arrays − This type is used to store arrays or list or multiple values into one key.

● Timestamp − ctimestamp. This can be handy for recording when a document has
been modified or added.

● Object − This datatype is used for embedded documents.

● Null − This type is used to store a Null value.

● Symbol − This datatype is used identically to a string; however, it's generally
reserved for languages that use a specific symbol type.

● Date − This datatype is used to store the current date or time in UNIX time format.
You can specify your own date time by creating object of Date and passing day,
month, year into it.

● Binary data − This datatype is used to store binary data.

● Code − This datatype is used to store JavaScript code into the document.

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

● Regular expression − This datatype is used to store regular expression.

Mongodb commands for database ON WINDOWS POWERSHELL

1. use Command

MongoDB use DATABASE_NAME is used to create database. The command will
create a new database if it doesn't exist, otherwise it will return the existing
database.

Syntax

Basic syntax of use DATABASE statement is as follows

>use Tybca;

switched to db Tybca

2. Show Command

MongoDB uses show dbs to list all the databases. The command will list all the
databases if it does exist.

Syntax

Basic syntax of show dbs statement is as follows

>Show dbs;

AlienDBex 0.000GB
Tybca 0.000GB
admin 0.000GB
config 0.000GB
db 0.000GB

3. db command

MongoDB uses db to show the current database that we are working with.

Syntax

Basic syntax of db statement is as follows

>db;

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

Tybca

4. The dropDatabase() Method

MongoDB db.dropDatabase() command is used to drop a existing database. In our
case Tybca database will be dropped

Syntax

Basic syntax of dropDatabase() command is as follows

>db.dropDatabase

>show db;

AlienDBex 0.000GB
admin 0.000GB
config 0.000GB
db 0.000GB

Mongodb commands for collection ON WINDOWS POWERSHELL

1. In MongoDB, db.createCollection(name, options) is used to create collection. But
usually you don?t need to create collection. MongoDB creates collection
automatically when you insert some documents.

Syntax:

db.createCollection(name, options)

Name: is a string type, specifies the name of the collection to be created.

Options: is a document type, specifies the memory size and indexing of the collection.
It is an optional parameter.

Field Type Description

Capped Boolean (Optional) If it is set to true, enables a capped collection.
Capped collection is a fixed size collection that automatically
overwrites its oldest entries when it reaches its maximum
size. If you specify true, you need to specify size parameter
also.

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

AutoIndexID Boolean (Optional) If it is set to true, automatically create index on ID
field. Its default value is false.

Size Number (Optional) It specifies a maximum size in bytes for a capped
collection. Ifcapped is true, then you need to specify this field
also.

Max Number (Optional) It specifies the maximum number of documents
allowed in the capped collection.

Let's take an example to create collection. In this example, we are going to create a
collection name firstSem

>use Tybca

switched to db Tybca

>db.createCollection("firstSem")
{ "ok" : 1 }

To check the created collection, use the command "show collections".

>show collections

firstSem

How does MongoDB create collection automatically

MongoDB creates collections automatically when you insert some documents. For
example: Insert a document named secondSem into a collection named SyBca. The
operation will create the collection if the collection does not currently exist.

>db.SyBca.insert({"name" : "secondSem"})

>show collections

SyBca

https://www.javatpoint.com/mongodb-create-collection
https://www.javatpoint.com/mongodb-create-collection
https://www.javatpoint.com/mongodb-create-collection
https://www.javatpoint.com/mongodb-create-collection

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

If you want to see the inserted document, use the find() command.

Syntax:

db.collection_name.find()

MongoDB Drop collection

In MongoDB, db.collection.drop() method is used to drop a collection from a database. It
completely removes a collection from the database and does not leave any indexes
associated with the dropped collections.

The db.collection.drop() method does not take any argument and produce an error when
it is called with an argument. This method removes all the indexes associated with the
dropped collection.

Syntax:

db.COLLECTION_NAME.drop()

MongoDB Drop collection example

Let's take an example to drop collection in MongoDB

First check the already existing collections in your database.

1. >use mydb

Switched to db mydb
1. > show collections

Sudents
classes

Note: Here we have a collection named Sudents and classes in our database.

Now drop the collection with the name SSSIT:

1. >db.Sudents.drop()

True

Now check the collections in the database:

>show collections

classes

Now, there is only classes collections in your database.

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

CRUD on Documents

1. The insert() Method

To insert data into MongoDB collection, you need to use
MongoDB's insert() or save() method.

Syntax

The basic syntax of insert() command is as follows –

>db.COLLECTION_NAME.insert(document)

>db.subjects.insert(
{‘name’:’Ajava’,
’lecturer’:’Rushil Panchal’,
’Experience’:5,
’Jdate’:new Date()
})
Write Result({“nInserted”:1})

Here subjects is our collection name. If the collection doesn't exist in the database, then
MongoDB will create this collection and then insert a document into it.

In the inserted document, if we don't specify the _id parameter, then MongoDB assigns
a unique ObjectId for this document.

_id is 12 bytes hexadecimal number unique for every document in a collection. 12 bytes
are divided as follows −

_id: ObjectId(4 bytes timestamp, 3 bytes machine id, 2 bytes process id, 3 bytes
incrementer)

You can also pass an array of documents into the insert() method as shown below:
db.subjects.insert(
{‘name’:’Ajava’,
’lecturer’:’Rushil Panchal’,
’Experience’:5,
‘class’:{
 ‘div’:’second’,
 ‘duration’:’45 mins’
 },

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

‘Batch’:[{‘size’:”small”,’no_students’:65},{‘size’:”Medium”, ‘no_students’:90}],
‘category’:”programming language”
})
Write Result({“nInserted”:1})

2. Check the inserted documents

If the insertion is successful, you can view the inserted document by the following query.

>db.subjects.find()

{“id”:ObjectId(“56482d3e27e53d2dbc93cef8”),”name”:”Ajava”,
“lecturer”:”Rushil Panchal”,
“Experience”:5,
{“class”:{“div”:”second”,”duration”:”45 mins” },
“Batch”:[{“size”:”small”,”no_students”:65},{“size”:”Medium”,“no_students”:90],
“category”:”programming language”}

The insertOne() method

If you need to insert only one document into a collection you can use this method.

Syntax

The basic syntax of insert() command is as follows –

>db.COLLECTION_NAME.insertOne(document)

Example

Following example creates a new collection named empDetails and inserts a document
using the insertOne() method.

> db.createCollection("empDetails")
{ "ok" : 1 }

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

> db.empDetails.insertOne(
 {
 First_Name: "Radhika",
 Last_Name: "Sharma",
 Date_Of_Birth: "1995-09-26",
 e_mail: "radhika_sharma.123@gmail.com",
 phone: "9848022338"
 })
{
 "acknowledged" : true,
 "insertedId" : ObjectId("5dd62b4070fb13eec3963bea")
}
>

The insertMany() method

You can insert multiple documents using the insertMany() method. To this method you
need to pass an array of documents.

Example

Following example inserts three different documents into the subjects collection using
the insertMany() method.

 > db.subjects.insertMany([
{ 'Name':'Java', 'Lecturer':'Rupal Panchal', 'Experience':5 },
{ 'Name':'IOT', 'Lecturer':'Priyanka Chauhan','Experience':3 },
{ 'Name':'PHP', 'Lecturer':'Heena Patel','Experience':5 }
])
{
 "acknowledged" : true,
 "insertedIds" : [
 ObjectId("62715a28b0ad3e1eac2401ce"),
 ObjectId("62715a28b0ad3e1eac2401cf"),
 ObjectId("62715a28b0ad3e1eac2401d0")
]
}
>

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

3. The find() Method

To query data from MongoDB collection, you need to use MongoDB's find() method.

Syntax

The basic syntax of find() method is as follows −

>db.COLLECTION_NAME.find()

find() method will display all the documents in a non-structured way.

Example

we have created a collection named subjects as –

> db.subjects.find()
{ "_id" : ObjectId("627085f4b0ad3e1eac2401c7"), "name" : "Ajava", "lecturer" : "Rushil
Panchal", "Experience" : 5, "Jdate" : ISODate("2022-05-03T01:31:32.767Z") }
{ "_id" : ObjectId("62715a28b0ad3e1eac2401ce"), "Name" : "Java", "Lecturer" : "Rupal
Panchal", "Experience" : 5 }
{ "_id" : ObjectId("62715a28b0ad3e1eac2401cf"), "Name" : "IOT", "Lecturer" : "Priyanka
Chauhan", "Experience" : 3 }
{ "_id" : ObjectId("62715a28b0ad3e1eac2401d0"), "Name" : "PHP", "Lecturer" : "Heena
Patel", "Experience" : 5 }
>

4. The pretty() Method

To display the results in a formatted way, you can use pretty() method.

Syntax

>db.COLLECTION_NAME.find().pretty()

Example

Following example retrieves all the documents from the collection named subjects
and arranges them in an easy-to-read format.

> db.subjects.find().pretty()
{
 "_id" : ObjectId("627085f4b0ad3e1eac2401c7"),
 "name" : "Ajava",
 "lecturer" : "Rushil Panchal",
 "Experience" : 5,
 "Jdate" : ISODate("2022-05-03T01:31:32.767Z")

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

}
{
 "_id" : ObjectId("62715a28b0ad3e1eac2401ce"),
 "Name" : "Java",
 "Lecturer" : "Rupal Panchal",
 "Experience" : 5
}
{
 "_id" : ObjectId("62715a28b0ad3e1eac2401cf"),
 "Name" : "IOT",
 "Lecturer" : "Priyanka Chauhan",
 "Experience" : 3
}
{
 "_id" : ObjectId("62715a28b0ad3e1eac2401d0"),
 "Name" : "PHP",
 "Lecturer" : "Heena Patel",
 "Experience" : 5
}
>

The findOne() method

Apart from the find() method, there is findOne() method, that returns only one
document.

Syntax
>db.COLLECTIONNAME.findOne()

Example

Following example retrieves the document with title MongoDB Overview.

> db.subjects.findOne({lecturer:"Rushil Panchal"})
{
 "_id" : ObjectId("627085f4b0ad3e1eac2401c7"),
 "name" : "Ajava",
 "lecturer" : "Rushil Panchal",
 "Experience" : 5,
 "Jdate" : ISODate("2022-05-03T01:31:32.767Z"),

}

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

RDBMS Where Clause Equivalents in MongoDB

To query the document on the basis of some condition, you can use following
operations.

Operation Syntax Example RDBMS Equivalent

Equality {<key>:{$eg;<value>}} db.subjects.find({"name":"Ajava"}).pretty() where name = 'Ajava'

Less Than {<key>:{$lt:<value>}} db.subjects.find({"Experience

":{$lt:5}}).pretty()

where Experience < 5

Less Than

Equals

{<key>:{$lte:<value>}} db.subjects.find({"Experience

":{$lte:5}}).pretty()

where Experience <=

5

Greater

Than

{<key>:{$gt:<value>}} db.subjects.find({"Experience

":{$gt:5}}).pretty()

where Experience > 5

Greater

Than

Equals

{<key>:{$gte:<value>}} db.subjects.find({"Experience

":{$gte:5}}).pretty()

where Experience >=

5

Not Equals {<key>:{$ne:<value>}} db.subjects.find({"Experience

":{$ne:5}}).pretty()

where Experience !=

5

Values in

an array

{<key>:{$in:[<value1>,

<value2>,……<valueN>]

}}

db.subjects.find({"name":{$in: ["Java", "IOT",

"PHP"] }}).pretty()

Where name matches

any of the value in

:["Java", "IOT", "PHP"]

Values not

in an array

{<key>:{$nin:<value>}} db.mycol.find({"name":{$nin:["Java",

"IOT"]}}).pretty()

Where name values is

not in the array

:["Java", "IOT"] or,

doesn’t exist at all

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

AND in MongoDB

Syntax

To query documents based on the AND condition, you need to use $and keyword.
Following is the basic syntax of AND −

>db.subjects.find({ $and: [{<key1>:<value1>}, { <key2>:<value2>}] })

Example

Following example will show all the tutorials written by 'tutorials point' and whose title
is 'MongoDB Overview'.

> db.subjects.find({$and:[{" Experience":5},{"name": "Ajava"}]}).pretty()
{
 "_id" : ObjectId("627085f4b0ad3e1eac2401c7"),
 "name" : "Ajava",
 "lecturer" : "Rushil Panchal",
 "Experience" : 5,
 "Jdate" : ISODate("2022-05-03T01:31:32.767Z")
}
>

For the above given example, equivalent where clause will be ' where Experience= 5
AND name= 'Ajava' '. You can pass any number of key, value pairs in find clause.

OR in MongoDB

Syntax

To query documents based on the OR condition, you need to use $or keyword. Following
is the basic syntax of OR −

>db.mycol.find(
 {
 $or: [
 {key1: value1}, {key2:value2}
]
 }
).pretty()

Example

Following example will show all the tutorials written by 'tutorials point' or whose title
is 'MongoDB Overview'.

>db.subjects.find({$or:[{"Experience":3},{"name": "Ajava"}]}).pretty()
{

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

 "_id" : ObjectId("627085f4b0ad3e1eac2401c7"),
 "name" : "Ajava",
 "lecturer" : "Rushil Panchal",
 "Experience" : 5,
 "Jdate" : ISODate("2022-05-03T01:31:32.767Z")
}
{
 "_id" : ObjectId("62715a28b0ad3e1eac2401cf"),
 "Name" : "IOT",
 "Lecturer" : "Priyanka Chauhan",
 "Experience" : 3
}

5. Using AND and OR Together

Example

The following example will show the documents that have likes greater than 10 and
whose title is either 'MongoDB Overview' or by is 'tutorials point'. Equivalent SQL where
clause is 'where Experience>3 AND (Name= 'Java' OR Lecturer= 'Rushil Panchal')

> db.subjects.find({"Experience": {$gt:3}, $or: [{"Name": "Java"},{"lecturer": "Rushil
Panchal"}]}).pretty()
{
 "_id" : ObjectId("627085f4b0ad3e1eac2401c7"),
 "name" : "Ajava",
 "lecturer" : "Rushil Panchal",
 "Experience" : 5,
 "Jdate" : ISODate("2022-05-03T01:31:32.767Z")
}
{
 "_id" : ObjectId("62715a28b0ad3e1eac2401ce"),
 "Name" : "Java",
 "Lecturer" : "Rupal Panchal",
 "Experience" : 5
}
>

NOR in MongoDB

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

Syntax

To query documents based on the NOT condition, you need to use $not keyword.
Following is the basic syntax of NOT −

>db.COLLECTION_NAME.find(
 {
 $not: [
 {key1: value1}, {key2:value2}
]
 }
)

Example

Assume we have inserted 3 documents in the collection empDetails as shown below −

db.empDetails.insertMany(
 [
 {
 First_Name: "Radhika",
 Last_Name: "Sharma",
 Age: "26",
 e_mail: "radhika_sharma.123@gmail.com",
 phone: "9000012345"
 },
 {
 First_Name: "Rachel",
 Last_Name: "Christopher",
 Age: "27",
 e_mail: "Rachel_Christopher.123@gmail.com",
 phone: "9000054321"
 },
 {
 First_Name: "Fathima",
 Last_Name: "Sheik",
 Age: "24",
 e_mail: "Fathima_Sheik.123@gmail.com",
 phone: "9000054321"
 }
]
)

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

Following example will retrieve the document(s) whose first name is not "Radhika" and
last name is not "Christopher"

> db.empDetails.find(
 {
 $nor:[
 40
 {"First_Name": "Radhika"},
 {"Last_Name": "Christopher"}
]
 }
).pretty()
{
 "_id" : ObjectId("5dd631f270fb13eec3963bef"),
 "First_Name" : "Fathima",
 "Last_Name" : "Sheik",
 "Age" : "24",
 "e_mail" : "Fathima_Sheik.123@gmail.com",
 "phone" : "9000054321"
}

NOT in MongoDB

Syntax

To query documents based on the NOT condition, you need to use $not keyword
following is the basic syntax of NOT −

>db.COLLECTION_NAME.find(
 {
 $NOT: [
 {key1: value1}, {key2:value2}
]
 }
).pretty()

Example

Following example will retrieve the document(s) whose age is not greater than 25

> db.empDetails.find({ "Age": { $not: { $gt: "25" } } })
{
 "_id" : ObjectId("5dd6636870fb13eec3963bf7"),
 "First_Name" : "Fathima",
 "Last_Name" : "Sheik",
 "Age" : "24",
 "e_mail" : "Fathima_Sheik.123@gmail.com",

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

 "phone" : "9000054321"
}

6.

1. Limit the number of rows in output

a. Db.subjects.find().limit(2);

2. Count the number of rows in the output

a. Db.subjects.find().count()

b. Db.subjects.find(name:’Ajava’).count()

3. To sort the database (1 for ascending and -1 for descending)

a. Db.subjects.find().sort({Exp:1}).pretty()

b. Db.subjects.find().sort({Exp:-1}).pretty()

4. PROJECTION

In MongoDB, projection means selecting only the necessary data rather than
selecting whole of the data of a document. If a document has 5 fields and you need
to show only 3, then select only 3 fields from them.

The find() Method

MongoDB's find() method, explained in MongoDB Query Document accepts
second optional parameter that is list of fields that you want to retrieve. In
MongoDB, when you execute find() method, then it displays all fields of a
document. To limit this, you need to set a list of fields with value 1 or 0. 1 is used
to show the field while 0 is used to hide the fields.

Syntax

The basic syntax of find() method with projection is as follows −

>db.COLLECTION_NAME.find({},{KEY:1})

Example

Consider the collection subjects has the following data −

> db.subjects.find().pretty()
{
 "_id" : ObjectId("62616980304d0bff277f23d2"),
 "name" : "java",
 "lecturer" : "Rupal Panchal",
 "Exp." : 5
}
{
 "_id" : ObjectId("62616a6f304d0bff277f23d3"),

https://www.tutorialspoint.com/mongodb/mongodb_query_document.htm

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

 "name" : "C",
 "lecturer" : "Riya Sen",
 "Exp." : 2
}
{
 "_id" : ObjectId("62616a6f304d0bff277f23d4"),
 "name" : "IOT",
 "Lecturer" : "Priyanka Chauhan",
 "Exp." : 5
}
{
 "_id" : ObjectId("62616e36304d0bff277f23d5"),
 "name" : "AJava",
 "lecturer" : "Rushil Panchal",
 "Exp." : 5,
 "Jdate" : ISODate("2022-04-21T14:46:14.736Z")
}
{
 "_id" : ObjectId("62616ed4304d0bff277f23d6"),
 "name" : "AJava",
 "lecturer" : "Rishi Panchal",
 "Exp." : 5,
 "Jdate" : ISODate("2022-04-21T14:48:52.176Z")
}

Following example will display the title of the document while querying the document.

> db.subjects.find({},{"name":1,_id:0})
{ "name" : "java" }
{ "name" : "C" }
{ "name" : "IOT" }
{ "name" : "AJava" }
{ "name" : "AJava" }
>

Please note _id field is always displayed while executing find() method, if you don't want
this field, then you need to set it as 0.

The Limit() Method

To limit the records in MongoDB, you need to use limit() method. The method accepts
one number type argument, which is the number of documents that you want to be
displayed.

Syntax

The basic syntax of limit() method is as follows −

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

>db.COLLECTION_NAME.find().limit(NUMBER)
Example

Consider the collection subjects has the following data.

Following example will display only two documents while querying the document.

> db.subjects.find({},{"name":1,_id:0}).limit(2)
{ "name" : "java" }
{ "name" : "C" }
>

The sort() Method

To sort documents in MongoDB, you need to use sort() method. The method accepts a
document containing a list of fields along with their sorting order. To specify sorting
order 1 and -1 are used. 1 is used for ascending order while -1 is used for descending
order.

Syntax

The basic syntax of sort() method is as follows −

>db.COLLECTION_NAME.find().sort({KEY:1})

Following example will display the documents sorted by title in the descending order.

> db.subjects.find({},{"lecturer":1,_id:0}).sort({"lecturer":-1})

{ "lecturer" : "Rushil Panchal" }

{ "lecturer" : "Rupal Panchal" }

{ "lecturer" : "Riya Sen" }

{ "lecturer" : "Rishi Panchal" }

>

MongoDB aggregate examples

https://studio3t.com/knowledge-base/articles/mongodb-aggregation-framework/#mongodb-aggregate-examples

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

Aggregations operations process data records and return computed results. Aggregation
operations group values from multiple documents together, and can perform a variety of
operations on the grouped data to return a single result. In SQL count(*) and with group
by is an equivalent of MongoDB aggregation.

The aggregate() Method

For the aggregation in MongoDB, you should use aggregate() method.

Syntax

Basic syntax of aggregate() method is as follows −

>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

Now from the above collection, if you want to display a list stating how many lecturers
are teaching a given subject , then you will use the following aggregate() method –

> db.subjects.aggregate([{$group : {_id : "$name", no_lecturer4subj: {$sum : 1}}}])

{ "_id" : "AJava", "no_lecturer4subj" : 2 }

{ "_id" : "IOT", "no_lecturer4subj" : 1 }

{ "_id" : "C", "no_lecturer4subj" : 1 }

{ "_id" : "java", "no_lecturer4subj" : 1 }

>

MongoDB $match

The $match stage allows us to choose just those documents from a collection that we
want to work with. It does this by filtering out those that do not follow our requirements.

In the following example, we only want to work with those documents which specify
that Spain is the value of the field country, and Salamanca is the value of the field city.

In order to get a readable output, I am going to add .pretty() at the end of all the
commands.

Example:

https://studio3t.com/knowledge-base/articles/mongodb-aggregation-framework/#mongodb-match
https://docs.mongodb.com/manual/reference/method/cursor.pretty/

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

> db.subjects.aggregate([{$match:{name:'AJava',lecturer:'Rishi Panchal'}}]).pretty()

{

 "_id" : ObjectId("62616ed4304d0bff277f23d6"),

 "name" : "AJava",

 "lecturer" : "Rishi Panchal",

 "Exp." : 5,

 "Jdate" : ISODate("2022-04-21T14:48:52.176Z")

}

>

Operator Meaning

$count Calculates the quantity of documents in the given group.

$max Displays the maximum value of a document’s field in the collection.

$min Displays the minimum value of a document’s field in the collection.

$avg Displays the average value of a document’s field in the collection.

$sum Sums up the specified values of all documents in the collection.

$push Adds extra values into the array of the resulting document.

The $group stage supports certain expressions (operators) allowing users to perform
arithmetic, array, boolean and other operations as part of the aggregation pipeline.

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

MongoDB $project

It is rare that you ever need to retrieve all the fields in your documents. It is good
practice to return only those fields you need so as to avoid processing more data than is
necessary.

The $project stage is used to do this and to add any calculated fields that you need.

In this example, we only need the fields name, lecturer and Jdate.

In the code that follows, please note that:

● We must explicitly write _id : 0 when this field is not required
● Apart from the _id field, it is sufficient to specify only those fields we need to obtain as a result

of the query

This stage …

db.subjects.aggregate([

 { $project : { _id : 0, name : 1, lecturer : 1, Jdate : 1 } }

]).pretty()

..will give the result …

>db.subjects.aggregate([

... { $project : { _id : 0, name : 1, lecturer : 1, Jdate : 1 } }

...]).pretty()

{ "name" : "java", "lecturer" : "Rupal Panchal" }

{ "name" : "C", "lecturer" : "Riya Sen" }

{ "name" : "IOT" }

{

 "name" : "AJava",

https://studio3t.com/knowledge-base/articles/mongodb-aggregation-framework/#mongodb-project

Course: 501-1: Advanced Web Designing
Unit-1: Concepts of NoSQL: MongoDB

 "lecturer" : "Rushil Panchal",

 "Jdate" : ISODate("2022-04-21T14:46:14.736Z")

}

{

 "name" : "AJava",

 "lecturer" : "Rishi Panchal",

 "Jdate" : ISODate("2022-04-21T14:48:52.176Z")

}

>

